Source Code
Pandas Construction Data Analysis
Overview
Based on DDC methodology (Chapter 2.3), this skill provides comprehensive Pandas operations for construction data processing. Pandas is the Swiss Army knife for data analysts - handling everything from simple data filtering to complex aggregations across millions of rows.
Book Reference: "Pandas DataFrame и LLM ChatGPT" / "Pandas DataFrame and LLM ChatGPT"
"Используя Pandas, вы можете управлять и анализировать наборы данных, намного превосходящие возможности Excel. В то время как Excel способен обрабатывать до 1 миллиона строк данных, Pandas может без труда работать с наборами данных, содержащими десятки миллионов строк." — DDC Book, Chapter 2.3
Quick Start
import pandas as pd
# Read construction data
df = pd.read_excel("bim_export.xlsx")
# Basic operations
print(df.head()) # First 5 rows
print(df.info()) # Column types and memory
print(df.describe()) # Statistics for numeric columns
# Filter structural elements
structural = df[df['Category'] == 'Structural']
# Calculate total volume
total_volume = df['Volume'].sum()
print(f"Total volume: {total_volume:.2f} m³")
DataFrame Fundamentals
Creating DataFrames
import pandas as pd
# From dictionary (construction elements)
elements = pd.DataFrame({
'ElementId': ['E001', 'E002', 'E003', 'E004'],
'Category': ['Wall', 'Floor', 'Wall', 'Column'],
'Material': ['Concrete', 'Concrete', 'Brick', 'Steel'],
'Volume_m3': [45.5, 120.0, 32.0, 8.5],
'Level': ['Level 1', 'Level 1', 'Level 2', 'Level 1']
})
# From CSV
df_csv = pd.read_csv("construction_data.csv")
# From Excel
df_excel = pd.read_excel("project_data.xlsx", sheet_name="Elements")
# From multiple Excel sheets
all_sheets = pd.read_excel("project.xlsx", sheet_name=None) # Dict of DataFrames
Data Types in Construction
# Common data types for construction
df = pd.DataFrame({
'element_id': pd.Series(['W001', 'W002'], dtype='string'),
'quantity': pd.Series([10, 20], dtype='int64'),
'volume': pd.Series([45.5, 32.0], dtype='float64'),
'is_structural': pd.Series([True, False], dtype='bool'),
'created_date': pd.to_datetime(['2024-01-15', '2024-01-16']),
'category': pd.Categorical(['Wall', 'Slab'])
})
# Check data types
print(df.dtypes)
# Convert types
df['quantity'] = df['quantity'].astype('float64')
df['volume'] = pd.to_numeric(df['volume'], errors='coerce')
Filtering and Selection
Basic Filtering
# Single condition
walls = df[df['Category'] == 'Wall']
# Multiple conditions (AND)
large_concrete = df[(df['Material'] == 'Concrete') & (df['Volume_m3'] > 50)]
# Multiple conditions (OR)
walls_or_floors = df[(df['Category'] == 'Wall') | (df['Category'] == 'Floor')]
# Using isin for multiple values
structural = df[df['Category'].isin(['Wall', 'Column', 'Beam', 'Foundation'])]
# String contains
insulated = df[df['Description'].str.contains('insulated', case=False, na=False)]
# Null value filtering
incomplete = df[df['Cost'].isna()]
complete = df[df['Cost'].notna()]
Advanced Selection
# Select columns
volumes = df[['ElementId', 'Category', 'Volume_m3']]
# Query syntax (SQL-like)
result = df.query("Category == 'Wall' and Volume_m3 > 30")
# Loc and iloc
specific_row = df.loc[0] # By label
range_rows = df.iloc[0:10] # By position
specific_cell = df.loc[0, 'Volume_m3'] # Row and column
subset = df.loc[0:5, ['Category', 'Volume_m3']] # Range with columns
Grouping and Aggregation
GroupBy Operations
# Basic groupby
by_category = df.groupby('Category')['Volume_m3'].sum()
# Multiple aggregations
summary = df.groupby('Category').agg({
'Volume_m3': ['sum', 'mean', 'count'],
'Cost': ['sum', 'mean']
})
# Named aggregations (cleaner output)
summary = df.groupby('Category').agg(
total_volume=('Volume_m3', 'sum'),
avg_volume=('Volume_m3', 'mean'),
element_count=('ElementId', 'count'),
total_cost=('Cost', 'sum')
).reset_index()
# Multiple grouping columns
by_level_cat = df.groupby(['Level', 'Category']).agg({
'Volume_m3': 'sum',
'Cost': 'sum'
}).reset_index()
Pivot Tables
# Create pivot table
pivot = pd.pivot_table(
df,
values='Volume_m3',
index='Level',
columns='Category',
aggfunc='sum',
fill_value=0,
margins=True, # Add totals
margins_name='Total'
)
# Multiple values
pivot_detailed = pd.pivot_table(
df,
values=['Volume_m3', 'Cost'],
index='Level',
columns='Category',
aggfunc={'Volume_m3': 'sum', 'Cost': 'mean'}
)
Data Transformation
Adding Calculated Columns
# Simple calculation
df['Cost_Total'] = df['Volume_m3'] * df['Unit_Price']
# Conditional column
df['Size_Category'] = df['Volume_m3'].apply(
lambda x: 'Large' if x > 50 else ('Medium' if x > 20 else 'Small')
)
# Using np.where for binary conditions
import numpy as np
df['Is_Large'] = np.where(df['Volume_m3'] > 50, True, False)
# Using cut for binning
df['Volume_Bin'] = pd.cut(
df['Volume_m3'],
bins=[0, 10, 50, 100, float('inf')],
labels=['XS', 'S', 'M', 'L']
)
String Operations
# Extract from strings
df['Level_Number'] = df['Level'].str.extract(r'(\d+)').astype(int)
# Split and expand
df[['Building', 'Floor']] = df['Location'].str.split('-', expand=True)
# Clean strings
df['Category'] = df['Category'].str.strip().str.lower().str.title()
# Replace values
df['Material'] = df['Material'].str.replace('Reinforced Concrete', 'RC')
Date Operations
# Parse dates
df['Start_Date'] = pd.to_datetime(df['Start_Date'])
# Extract components
df['Year'] = df['Start_Date'].dt.year
df['Month'] = df['Start_Date'].dt.month
df['Week'] = df['Start_Date'].dt.isocalendar().week
df['DayOfWeek'] = df['Start_Date'].dt.day_name()
# Calculate duration
df['Duration_Days'] = (df['End_Date'] - df['Start_Date']).dt.days
# Filter by date range
recent = df[df['Start_Date'] >= '2024-01-01']
Merging and Joining
Merge DataFrames
# Elements data
elements = pd.DataFrame({
'ElementId': ['E001', 'E002', 'E003'],
'Category': ['Wall', 'Floor', 'Column'],
'Volume_m3': [45.5, 120.0, 8.5]
})
# Unit prices
prices = pd.DataFrame({
'Category': ['Wall', 'Floor', 'Column', 'Beam'],
'Unit_Price': [150, 80, 450, 200]
})
# Inner join (only matching)
merged = elements.merge(prices, on='Category', how='inner')
# Left join (keep all elements)
merged = elements.merge(prices, on='Category', how='left')
# Join on different column names
result = df1.merge(df2, left_on='elem_id', right_on='ElementId')
Concatenating DataFrames
# Vertical concatenation (stacking)
all_floors = pd.concat([floor1_df, floor2_df, floor3_df], ignore_index=True)
# Horizontal concatenation
combined = pd.concat([quantities, costs, schedule], axis=1)
# Append new rows
new_elements = pd.DataFrame({'ElementId': ['E004'], 'Category': ['Beam']})
df = pd.concat([df, new_elements], ignore_index=True)
Construction-Specific Analyses
Quantity Take-Off (QTO)
def generate_qto_report(df):
"""Generate Quantity Take-Off summary by category"""
qto = df.groupby(['Category', 'Material']).agg(
count=('ElementId', 'count'),
total_volume=('Volume_m3', 'sum'),
total_area=('Area_m2', 'sum'),
avg_volume=('Volume_m3', 'mean')
).round(2)
# Add percentage column
qto['volume_pct'] = (qto['total_volume'] /
qto['total_volume'].sum() * 100).round(1)
return qto.sort_values('total_volume', ascending=False)
# Usage
qto_report = generate_qto_report(df)
qto_report.to_excel("qto_report.xlsx")
Cost Estimation
def calculate_project_cost(elements_df, prices_df, markup=0.15):
"""Calculate total project cost with markup"""
# Merge with prices
df = elements_df.merge(prices_df, on='Category', how='left')
# Calculate base cost
df['Base_Cost'] = df['Volume_m3'] * df['Unit_Price']
# Apply markup
df['Total_Cost'] = df['Base_Cost'] * (1 + markup)
# Summary by category
summary = df.groupby('Category').agg(
volume=('Volume_m3', 'sum'),
base_cost=('Base_Cost', 'sum'),
total_cost=('Total_Cost', 'sum')
).round(2)
return df, summary, summary['total_cost'].sum()
# Usage
detailed, summary, total = calculate_project_cost(elements, prices)
print(f"Project Total: ${total:,.2f}")
Material Summary
def material_summary(df):
"""Summarize materials across project"""
summary = df.groupby('Material').agg({
'Volume_m3': 'sum',
'Weight_kg': 'sum',
'ElementId': 'nunique'
}).rename(columns={'ElementId': 'Element_Count'})
summary['Volume_Pct'] = (summary['Volume_m3'] /
summary['Volume_m3'].sum() * 100).round(1)
return summary.sort_values('Volume_m3', ascending=False)
Level-by-Level Analysis
def analyze_by_level(df):
"""Analyze construction quantities by building level"""
level_summary = df.pivot_table(
values=['Volume_m3', 'Cost'],
index='Level',
columns='Category',
aggfunc='sum',
fill_value=0
)
level_summary['Total_Volume'] = level_summary['Volume_m3'].sum(axis=1)
level_summary['Total_Cost'] = level_summary['Cost'].sum(axis=1)
return level_summary
Data Export
Export to Excel with Multiple Sheets
def export_to_excel_formatted(df, summary, filepath):
"""Export with multiple sheets"""
with pd.ExcelWriter(filepath, engine='openpyxl') as writer:
df.to_excel(writer, sheet_name='Details', index=False)
summary.to_excel(writer, sheet_name='Summary')
pivot = pd.pivot_table(df, values='Volume_m3',
index='Level', columns='Category')
pivot.to_excel(writer, sheet_name='By_Level')
# Usage
export_to_excel_formatted(elements, qto_summary, "project_report.xlsx")
Export to CSV
# Basic export
df.to_csv("output.csv", index=False)
# With encoding for special characters
df.to_csv("output.csv", index=False, encoding='utf-8-sig')
# Specific columns
df[['ElementId', 'Category', 'Volume_m3']].to_csv("volumes.csv", index=False)
Performance Tips
# Use categories for string columns with few unique values
df['Category'] = df['Category'].astype('category')
# Read only needed columns
df = pd.read_csv("large_file.csv", usecols=['ElementId', 'Category', 'Volume'])
# Use chunking for very large files
chunks = pd.read_csv("huge_file.csv", chunksize=100000)
result = pd.concat([chunk[chunk['Category'] == 'Wall'] for chunk in chunks])
# Check memory usage
print(df.memory_usage(deep=True).sum() / 1024**2, "MB")
Quick Reference
| Operation | Code |
|---|---|
| Read Excel | pd.read_excel("file.xlsx") |
| Read CSV | pd.read_csv("file.csv") |
| Filter rows | df[df['Column'] == 'Value'] |
| Select columns | df[['Col1', 'Col2']] |
| Group and sum | df.groupby('Cat')['Vol'].sum() |
| Pivot table | pd.pivot_table(df, values='Vol', index='Level') |
| Merge | df1.merge(df2, on='key') |
| Add column | df['New'] = df['A'] * df['B'] |
| Export Excel | df.to_excel("out.xlsx", index=False) |
Resources
- Book: "Data-Driven Construction" by Artem Boiko, Chapter 2.3
- Website: https://datadrivenconstruction.io
- Pandas Docs: https://pandas.pydata.org/docs/
Next Steps
- See
llm-data-automationfor generating Pandas code with AI - See
qto-reportfor specialized QTO calculations - See
cost-estimation-resourcefor detailed cost calculations