← Back to Browser & Automation

self-evolving-skill

Meta-cognitive self-learning system - Automated skill

0
Source Code

Self-Evolving Skill

元认知自学习系统 - 基于预测编码和价值驱动的Skill自动演化。

功能

  • ResidualPyramid金字塔分解,量化认知缺口 -: 残差 自适应反思触发: 基于残差能量自动判断何时需要学习
  • 经验回放: 缓存已学模式,降低重复触发
  • 价值门控: 只有提升长期价值才接受变异
  • 持久化: 经验自动保存/加载

安装

# 技能已安装到 ~/.openclaw/skills/self-evolving-skill
# 或使用ClawHub
clawhub install self-evolving-skill

架构

self-evolving-skill/
├── core/                      # Python核心
│   ├── residual_pyramid.py     # 残差金字塔(SVD分解)
│   ├── reflection_trigger.py  # 自适应触发器
│   ├── experience_replay.py   # 经验回放缓存
│   ├── skill_engine.py        # 核心引擎+ValueGate
│   ├── storage.py             # 持久化
│   └── mcp_server.py          # MCP服务器
├── src/                       # TypeScript SDK
│   ├── index.ts               # 主入口
│   ├── cli.ts                 # CLI
│   └── mcp-tools.ts           # 工具定义
├── skills/                    # OpenClaw Skill
│   └── self-evolving-skill/    # 技能封装
├── MCP_CONFIG.md              # MCP配置
└── README.md                   # 文档

MCP工具

工具 描述 参数
skill_create 创建Skill name, description
skill_execute 执行并学习 skill_id, context, success, value
skill_analyze 分析嵌入 embedding
skill_list 列出Skills -
skill_stats 系统统计 -
skill_save 持久化保存 skill_id
skill_load 加载 skill_id

使用方式

CLI

# 列出所有Skill
openclaw skill self-evolving-skill list

# 创建Skill
openclaw skill self-evolving-skill create --name "MySkill"

# 执行
openclaw skill self-evolving-skill execute <id> --success

# 分析
openclaw skill self-evolving-skill analyze --embedding '[0.1,0.2,...]'

# 统计
openclaw skill self-evolving-skill stats

MCP服务器

# 启动MCP服务器
cd ~/.openclaw/skills/self-evolving-skill
./run_mcp.sh

# 或使用适配器
python3 mcporter_adapter.py skill_list '{}'

编程

import { SelfEvolvingSkillEngine } from 'self-evolving-skill';

const engine = new SelfEvolvingSkillEngine();
await engine.init();

const { skillId } = await engine.createSkill({ name: 'Analyzer' });
const stats = await engine.stats();

核心算法

1. 残差金字塔分解

pyramid = ResidualPyramid(max_layers=5, use_pca=True)
decomposition = pyramid.decompose(embedding)

# 输出:
# - residual_ratio: 残差能量比率
# - suggested_abstraction: POLICY / SUB_SKILL / PREDICATE
# - novelty_score: 综合新颖性

2. 三层跃迁规则

覆盖率 抽象层级 操作
>80% POLICY 调整策略权重
40-80% SUB_SKILL 生成子Skill
<40% PREDICATE 归纳新谓词

3. 自适应阈值

trigger = ReflectionTrigger(
  min_energy_ratio=0.10,     # 初始阈值
  value_gain_threshold=0.20, # 触发阈值
  target_trigger_rate=0.15   # 目标15%触发率
)

文件位置

路径 说明
~/.openclaw/skills/self-evolving-skill 技能根目录
~/.openclaw/mcp_servers/self-evolving-skill.json MCP服务器配置
~/.openclaw/workspace/self-evolving-skill/storage 数据存储

相关文档